2017年06月25日

照明器具製作 第4回:パワーLEDについて1(普通のLEDとの違い、放熱)

はじめに

前回は作成した2台目の照明器具についてざっと説明しました。今回から照明器具についてもう少し詳しく説明していきます。今回作成した2台目と以前作成した1台目は回路や部品など共通点が多いですので、1台目の記事も参考にしてください。
今回説明するのは光源のパワーLEDについてです。
 

目次

 

1. 普通のLEDとの違い

照明器具の光源に使用しているパワーLEDは秋月電子で購入したOptoSupply製の放熱基板付き1W電球色パワーLED(型番:OSM5XME1C1S 秋月電子通販コード:I-04036)です。パワーLEDと普通のLED(型番:OSDR3133A 秋月電子通販コード:I-00562)と並べてみたものが図1です(使用済みの部品なので半田跡があったり足が曲がったりしています)。外観状の大きな違いとしてはパワーLEDの方は放熱基板が付いています
 
P2290722.jpg
図1 パワーLED(左)と普通のLED(右)の外観
 
さて、パワーLEDは普通のLEDと何が違うのかというと、簡単にいうならパワーLEDは消費電力を増やして、その分明るくしたLEDです。パワーLEDと普通のLEDの主な仕様を比較したものが表1です。各値はデータシートの標準的な値を採用しています。
 
表1 パワーLEDと普通のLEDの仕様比較
  順電流 順電圧 明るさ
パワーLED(OSM5XME1C1S) 350m[A] 3.3[V] 75[lm]
普通のLED(OSDR3133A) 20[mA] 2.0[V] 500[mcd]
 
表1からそれぞれのLEDの消費電力を求めるとパワーLEDは約1.2[W]普通のLEDは約40[mW]と大きく異なります。明るさはそれぞれの単位が異なるため直接比較することは出来ませんが、パワーLEDの方が圧倒的に明るいです。
このようにパワーLEDは消費する電力が多く、その分明るいLEDです。そしてパワーLEDは普通のLEDよりも消費電力が増えたことで放熱が必要になったり、順電流制御が必要になります。
 

2. 放熱

普通のLEDなら消費電力が少ないので放熱が必要になるほど発熱はしません。ですが、パワーLEDだと消費電力が多いので発熱も大きく、放熱が必須です。
購入した1WパワーLEDは図1で分かるようにすでに放熱基板がついています。ですがこの放熱基板は半田付けや別の放熱器を取り付けやすくするためのものですので、この放熱基板だけでは放熱が不十分です。
 
ということで、パワーLEDの放熱基板にさらに別の放熱器を取り付けます。使う放熱器は16×25×16mmの大きさの放熱器(型番:16PB017-01025 秋月電子通販コード:P-05053)です。これだけだと取り付けが出来ないので熱伝導両面テープ(秋月電子通販コード:P-00516)も使用します。それぞれの部品の外観を図2に、取り付けた様子を図3に示します。熱伝導両面テープは適切な大きさに切って使います。
 
P2290723.jpg
図2 熱伝導両面テープ(上)とパワーLED(左下)と放熱器(右下)の外観
 
P2290726.jpg
図3 放熱器に取り付けたパワーLED
 
この組みあわせで放熱に問題が無いかどうかを確認します。パワーLEDのデータシートに熱抵抗ごとの周囲温度と順電流特性のグラフがあったので、これを使います(図4)。ちなみに熱抵抗とは温度の伝わりにくさを示す値のことです。この値が大きいほど熱が伝わりにくく、小さいほど熱が伝わりやすいです。ですので熱抵抗の値が小さいほど放熱能力が高いです。
 
2017-06-24.png
図4 周囲温度と順電流特性(OSM5XME1C1Sデータシートより)
 
作成する照明器具は室内で使おうと思っているので想定される周囲温度は高くても40℃程度です。ちょっとマージンを多めに取って周囲温度が60℃でも順電流に影響がないようにしたいです。図4から熱抵抗が45[℃/W]以下なら周囲温度が60℃でも順電流に影響はなさそうです。
使用する放熱器の熱抵抗はデータシートから20.0[℃/W]です。熱伝導両面テープの場合は熱伝導率から熱抵抗に換算しないといけないのですが、とりあえず約1[℃/W]とします。この組みあわせの場合熱抵抗の合計は21[℃/W]ですので45[℃/W]以下の値となり、放熱能力に問題はなさそうです。
また、以前の記事で温度試験は行っており、この放熱器だと温度上昇幅は室温+15℃〜+20℃ということが分かっています。
 
2017-02-25.png
図5 温度試験結果
 

おわりに

今回の記事をまとめるとこのようになります。
  • パワーLEDは消費電力が多くて明るいLED
  • パワーLEDは発熱するので放熱が必須
これ以外に重要な点として順電流が大きいという違いがあるのですが、それについてはまた次回説明します。
 

参考資料

  1. "パワーLED 基礎と定電流装置製作編". サイト名:マルツパーツ館 パーツまめ知識. https://www.marutsu.co.jp/contents/shop/marutsu/mame/194.html, (参照日:2017-06-25)
  2. "熱抵抗". サイト名:最新アナログ基礎用語集 . http://www.tij.co.jp/lsds/ti_ja/analog/glossary/thermal_resistance.page, (参照日:2017-06-25)
 

高輝度/パワーLEDの活用テクニック 駆動方法から熱対策/可視光通信まで応用例が満載! (ハードウェア・セレクション) [ トランジスタ技術編集部 ]

価格:3,024円
(2017/6/24 16:42時点)
感想(15件)

posted by ました at 16:38| Comment(0) | TrackBack(0) | 電子工作の知識 | このブログの読者になる | 更新情報をチェックする

2016年12月13日

Raspberry Piカメラ用ケースの作成 -第2回:3Dプリントの流れ

はじめに

前回は作成したカメラケースを紹介したので、今回は作成過程を説明します。
作成過程の説明は2回に分け、今回は3Dプリントの流れ、次回はカメラ用ケース作成過程を説明します。
 

目次

 

1. 3Dプリンターの仕組み

3Dプリントでは3Dプリンターが作成物を造形します。造形方法は複数あり、安価な家庭用3Dプリンターだと熱溶解積層法が一般的です。
Youtubeに熱溶解積層法で造形している動画があったので、紹介します
 
 
上の動画のように熱溶解積層法では溶かした材料をノズルから出力していき、その層を積み重ねることで造形します。
作成したい3Dモデルの断面図通りに3Dプリンターのノズルを動かすことで、3Dプリントを行うことが出来ます。
 

2. データ作成の流れ

3Dプリントを行うには3Dプリンターのノズルを断面図通りに動かす必要があるわけですが、そのためにはいくつかのデータを作る必要があります。その流れは以下の通りです。
  1. 3D CADで3Dモデルを作る
  2. 作成した3DモデルをSTLファイル(汎用的な3Dデータ)に変換する
  3. STLファイルをGコード(3Dプリンタを動かすためのデータ)に変換する
  4. Gコードを元に3Dプリンターが造形する
 
最初に必要となるのは造形物の3Dモデルです。これを3D CADで作ります。作り方はまた後ほど説明します。
 
2016-12-13 (7).png
図1 3Dモデル
 
3Dモデルの作成を終えたら、その3DモデルをSTLファイルという形式に変換します。
基本的に作成した3Dモデルは作成に使用した3D CADでしか開けません。そこで他のソフトなどとやり取りが出来るように、STLファイルと呼ばれる汎用的な3Dデータに変換します。こうすることで他のソフトと3Dモデルをやり取りすることが出来ます。
 
2016-12-13 (8).png
図2 STLファイル
 
上図のようにSTLファイルは物体を三角形の集合体として表現しています。この三角形の数が多ければ多いほどデータ容量は大きくなりますが、高精細なモデルとなります。
また、STLファイルの時点でSTLビューワーと呼ばれるソフトを使い、そのモデルが現実的かどうかのチェックをします。例えば、厚みが0となっている箇所はないかとか、2つの物体が重なっていないかなどのチェックです。
 
モデルに問題がないのであれば、STLファイルをGコードに変換します。Gコードは3Dプリンターのノズルの動きを表したデータで、変換ソフトをスライサーといいます。
Gコードは動きを表しているので、この軌跡通りに3Dプリンタのヘッドが動きます。特に図4のように真上から見ると、ノズルの動きが分かりやすいと思います。
 
2016-12-13 (11).png
図3 Gコードの3Dモデル
 
2016-12-13 (9).png
図4 Gコードの3Dモデル(真上)
 
あとはこのGコードを3Dプリンターに読み込まれば、造形することができます。
 
3Dプリントを行うためには3Dモデル・STLファイル・Gコードといった3つのデータを作成する必要がありますが、(精度を求めなければ)STLファイルやGコードは変換することで作成できます。ですので、3Dプリントを行うために作成するメインのデータは3Dモデルです。
 

3. 3Dモデルの作り方

3Dモデルを作成するための3D CADは多数ありますが、私はAUTODESK社の123D Designを使いました。
Autodesk社 123D Design
 
この3D CADは無償で使うことが出来ます。また、私はDMM.makeのサイトに使い方の動画が掲載されています。
この記事でも3Dモデルの作成方法を簡単に説明しますが、詳細な使い方はDMM.makeの方を参考にしてください。
DMM.make 動画でマスターする、3Dデータのつくり方 3D CADコース
 
123D Designでは平面図を書き、その平面図を立体にし、それらの立体を組み合わせる、という行程を繰り返して3Dモデルを作成します。
 
まずスケッチと呼ばれる平面図を書きます。
 
2016-12-13 (16).png
図5 スケッチの作成
 
2016-12-13 (2).png
図6 完成したスケッチ
 
次にそのスケッチに対して押し出しという操作を行って立体にします。
 
2016-12-13 (13).png
図7 押し出しの様子
 
押し出しでは立体を作るだけでなく、削除することも出来ます。
 
2016-12-13 (14).png
図8 押し出しによる削除
 
このように123D Designではスケッチで図形を書き、そのスケッチを押しだしで立体にして3Dモデルを作っていきます。
ここでは説明しませんが、押し出しを高さ方向だけでなく回転方向に押し出したり、立体の角を丸くする面取りしたり、他にも様々な操作があります。
 

まとめ

今回は簡単にですが、3Dプリントを行うために必要なデータについてと、3Dモデルを作成する方法について説明しました。
次回は実際にカメラケースを作成した過程などについて説明します。
 

参考資料

  1. "3Dプリンターの原理(個人向け)". MONOWEB:. http://d-engineer.com/3dprint/3dprintergenri1.html, (参照日:2016-12-13)
  2. "ここから始める、3Dプリンタ&モデリング基礎知識". Impress Watch:. http://akiba-pc.watch.impress.co.jp/docs/column/3dpcontest/620205.html, (参照日:2016-12-13)
  3. "3Dプリンターの基礎". MONOWEB:. http://d-engineer.com/3dprint/3dprintergenri1.html, (参照日:2016-12-13)
 

posted by ました at 11:55| Comment(0) | TrackBack(0) | 電子工作の知識 | このブログの読者になる | 更新情報をチェックする

2015年12月20日

番外編 -スイッチングレギュレータ(降圧型、DC/DC変換)

はじめに

前回はリニアレギュレータについて説明しました。今回はスイッチングレギュレータについて説明します。
なお、今回説明するのはスイッチングレギュレータの中でも降圧型DC/DC変換を行うタイプのスイッチングレギュレータです。


目次



1. 仕組み

スイッチングレギュレータは出力のON/OFFを高速で切り替えて(=スイッチングして)降圧を行います(図1)。このやり方は以前にLED調光を行うために使ったPWMと似ています。電圧を70[%]に降圧したいならDuty比を70[%]に、電圧を40[%]に降圧したいならDuty比を40[%]にするといった具合です。

dec18_スイッチングレギュレータ_1.png
図1 スイッチングレギュレータの動作

スイッチングを行っただけだと出力はパルス波ですので、直流電圧ではありません。そこで出力電圧が直流に近づくよう平滑化を行います。平滑化はコンデンサなどを使った平滑回路で行います(図2)。ただし、平滑化を行っても完全な直流電圧とはならず、多少のノイズが乗ります。

dec18_スイッチングレギュレータ_2.png
図2 スイッチングレギュレータ出力の平滑化

このようにスイッチングレギュレータはスイッチングを行ってパルス波を生成し、それを平滑化して直流にすることで降圧を行います。


2. 利点

スイッチングレギュレータの主な利点は2つです。
  • 無駄になる電気エネルギーや発熱が少ない
  • 入力電圧によって効率が変わらない

無駄になる電気エネルギーや発熱が少ない

スイッチングレギュレータはON/OFFを繰り返して降圧するため、OFFの間は電力の消費が減ります(図3)。そのため無駄な電力の消費を少なくできます。

dec18_スイッチングレギュレータ_3.png
図3 スイッチングによる入力電力の変化

無駄な電力が少ないというのは効率が良いとも言い換えられます。効率は以下の式で求められます。

$効率 = \displaystyle{ \frac{出力電圧}{入力電圧} }$

スイッチングレギュレータは最大効率80〜90[%]程度のものが多いです。ですので、無駄になる電力は入力の10〜20[%]程度です。
リニアレギュレータの効率は入出力電圧差にもよりますが、60〜70[%]くらいが多いです。無駄になる電力は30〜40[%]程度とスイッチングレギュレータの倍近くあります。
無駄になった電力は熱に変化します。無駄になる電力が少ないということは部品の発熱が少ないということです。スイッチングレギュレータはリニアレギュレータよりも発熱が少ないため、放熱の設計が楽になります。

効率が入出力電圧差の影響を受けにくい

スイッチングレギュレータはON/OFFを繰り返して降圧するわけですが、どれだけ降圧するかはON/OFFのDuty比で調整できます
例えば入力電圧が高ければその分ONの時間を短くし(図4)、入力電圧が低ければONの時間を長くすればよいです(図5)。

dec18_スイッチングレギュレータ_4.png
図4 入力電圧:高、Duty比:低のイメージ

dec18_スイッチングレギュレータ_5.png
図5 入力電圧:低、Duty比:高のイメージ

スイッチングレギュレータは入出力電圧差が大きくてもDuty比で調整が可能ですのでリニアレギュレータに比べると、効率が入出力電圧差の影響を受けにくいです。


3. 欠点

スイッチングレギュレータの主な欠点は3つです。
  • 出力にノイズが乗る
  • 部品が高い
  • 外付け回路が必要

出力にノイズが乗る

スイッチングレギュレータはON/OFFを高速で繰り返すので、ノイズの発生源となります。
ノイズは主に2種類あり出力電圧のノイズ電磁波のノイズです(図6)。出力電圧は平滑化を行っても多少変動しているため、この変動がノイズとなります。また平滑前はパルス波なのですが、このパルス波から電磁波が発生しノイズとなります。

dec18_スイッチングレギュレータ_6.png
図6 スイッチングレギュレータのノイズ

ノイズがあまりにも多いと製品の動作がおかしくなったり、他の製品にまで影響を与える場合があります。それらを防止するために、スイッチングレギュレータではノイズ対策が必要な場合があります。

部品が高い

スイッチングレギュレータはリニアレギュレータと比較すると価格が高いです。リニアレギュレータが1個¥20〜¥100に対して、スイッチングレギュレータは1個¥200〜¥500程度です。詳細はリニアレギュレータの利点を参照してください。

外付け回路が必要

スイッチングレギュレータの出力はパルス波形ですので、直流にするには平滑回路を外付けする必要があります。図7はスイッチングレギュレータ(LT1776CN8)とその平滑回路の回路図です。

dec18_スイッチングレギュレータ_推奨回路.png
図7 スイッチングレギュレータ回路例(秋月電子通商 通販コード:I-02788)

3端子レギュレータの外付け回路(コンデンサ×2)と比べると、スイッチングレギュレータの外付け回路はだいぶ複雑です。そのため、リニアレギュレータと比べるとスイッチングレギュレータは回路設計が難しいです。


まとめ

以上、スイッチングレギュレータについて説明しました。説明したことをまとめると以下のようになります。
  • スイッチングレギュレータはON/OFFの切り替え(スイッチング)によって、電圧変換を行う
  • OFFにしている間は電力消費が少ない
  • 利点:無駄になる電気エネルギーや発熱が少ない、入出力電圧差によって効率が変わらない
  • 欠点:ノイズが発生する、部品が高い、回路設計が複雑
利点や欠点はリニアレギュレータと反対です。
個人の電子工作で電源を選ぶ場合、外付け回路が複雑という欠点の影響が多いのでスイッチングレギュレータを使う場面は少ないと思います。とはいえ1[A]以上の電流を扱うような場合にリニアレギュレータを選ぶと放熱の設計が大変ですので、必要な電流が大きい場合はスイッチングレギュレータを使った方がいいと思います。


参考資料

  1. 著書名:CQ出版社. 書名:トランジスタ技術2013年6月号. 出版社:CQ出版社, 出版年:2013, 参照頁(pp.120-132)
  2. 作者名:イーター電機工業株式会社. "効率は高い方がいい!". サイト名:イーター電機工業株式会社. https://www.eta.co.jp/concept/cp_efficiency.cfm, (参照日:2015-12-19)
  3. 作者名:ローム株式会社. "降圧型スイッチングレギュレータの動作原理". サイト名:Tech Web. http://micro.rohm.com/jp/techweb/knowledge/dcdc/s-dcdc/02-s-dcdc/90, (参照日:2015-12-19)
  4. 作者名:Texas Instruments. " スイッチング・レギュレータ". サイト名:Texas Instruments. http://www.tij.co.jp/lsds/ti_ja/analog/glossary/switching_regulator.page, (参照日:2015-12-19)


スイッチング電源設計基礎技術 [ 前坂昌春 ]

価格:2,592円
(2015/12/19 11:40時点)
感想(0件)

posted by ました at 10:28| Comment(0) | TrackBack(0) | 電子工作の知識 | このブログの読者になる | 更新情報をチェックする